Libby: Health Information

What is the nature & extent of health effects associated with Libby Amphibole exposures?

Aubrey Miller, MD, MPH
US EPA Region 8

Asbestos Health Effects

- Non-Cancer Fibrosis/Scarring (latency >10 yrs)
 - Asbestosis scarring of the air sacs
 - Pleural Fibrosis scarring of lining around the lung
 - Pleural Effusions
- Cancer (latency 20-40 yrs)
 - Lung Cancer
 - Increased risk of all lung cancer types, especially with smoking
 - Mesothelioma
 - Rapidly fatal cancer of the lining around the lungs & abdomen
 - Virtually all cases associated with asbestos exposure
 - Not affected by smoking
 - Other Cancers
 - Gastrointestinal & laryngeal

Historical Libby-related Health Data

Libby Site

- Amandus (NIOSH; 1987) & McDonald Studies (1986)
 - Mortality: Increased risk asbestosis & lung cancer
 - Morbidity: Increased interstitial & pleural disease (x-rays)
 - McDonald Update (2004): risk of mesothelioma in Libby miners 10x that of chrysotile miners in Quebec; similar to crocidolite miners.

Other Sites Processing Libby Vermiculite

- Lockey et al, 1984: OM Scott, Ohio: CXR abnormalities in 5% (n=513) of workers, pleural effusions, symptoms;
 - Lockey Follow-up (2005): 26% Pleural abnormalities in same cohort

Libby Worker Mortality Studies JC McDonald (McGill University)*

Studies	< July 1983	Total
Lung CA SMR	2.45	2.40
NMRD** SMR	2.55	3.09
Mesothelioma	8	12
Cases		•

- 406 workers Hired prior to 1963 and followed till 1999
- · Worked at least 1 year
- ** Non-malignant respiratory disease (includes asbestosis)

McDonald JC, Harris J, Armstrong B. Mortality in a cohort of vermiculite miners exposed to fibrous Amphibole in Libby, Montana. Occup Environ. Med. 2004; 61:363-366.

,我们就是我们的证明,我们就是我们的对象,我们就是我们的的。""我们的,我们就会会会会会会会会会会会会会会会会会会会会会。""我们就是我们的,我们就是我们的人, 第一个

Libby Worker Mortality Studies JC McDonald (McGill University)

Table 3 Poisson regression estimates of relative risk of death from lung cancer, non-malignant respiratory disease (NMRD), and all causes in relation to cumulative exposure

Certified course of death	Overs	its the response	Deaths observed (expected)	Adjusted relative risk (RS% C)	p value
Respiratory concer	l:	O- (8.6)	5 (4.3)	1.00	·····
	2: 3:	11.2% (16.2)	9 (4.1)	1.74 (0.58 to 5.23)	
	3 ±	25.2 (53.2)	10 (4.1)	1.85 (0.63 to 5.45)	
	4:	113.8 (393.8)	16 (4.8)	3.20 (1.16 to 8.84)	
	tieco	r model (per 100 f/mLy		0.36 (0.03 to 1.20)	0.02
NMRD	1:	(AB) -0	5 (3.5)	1.00	
	2:	11. <i>ว</i> - (16.7)	13 (3.7)	2.53 (0.88 to 7.24)	
	3:	25.2 (53.2)	14 (3.8)	2.62 (0.93 to 7.27)	
	3: 4:	113.8-4393.81	19 (4.1)	3.11 (1.15 b 8.44)	
	tinoo	r model (par 100 f/ml.)	1	0.38 (0.12 ь 0.96)	0.0001
All deaths	1:	0- (98.4)	. 55 (45.6)	1.00	
	1; 2:	11.7- (16.7)	59 (47.1)	0.97 (0.66 to 1.41)	
	3:	25.2 (53.2)	66 (48.0)	1.08 (0.75 to 1.56)	
	4 :	113.8- (393.8)	90 (53.7)	1.42 (1.01 6 2.01)	
	Linco	r madel (per 100 f/ml.y		0.14 (0.05 to 0.24)	0.0003

All analyses exclude deaths and person-years in the first 10 years of follow up.

Libby Worker Mortality Studies NIOSH 2007*

Standardized Mortality R	ates (SMRs)
All Causes	1.2
Respiratory	1.7
Asbestosis	165.8
Mesothelioma (Total n=15; SMR based on 1999-2001 n=2)	15.1

- 1,672 workers hired from 1935 1981.
- Follow-up through December 2001.

Sullivan, P. Vermiculite, Respiratory Disease and Asbestos Exposure in Libby, Montana: Update of a Cohort Mortality Study. Env. Health Perspectives (On line Jan. 3, 2007. doi:1289/ehp.9481 at http://dx.doi.org/)

Libby Worker Mortality Studies NIOSH 2007

- Non-Malignant Respiratory Disease excess mortality:
 - Those < 4.5 f/cc-years exposure
 - Even among those who worked < 1 year
 - SMR 1.9 for those <3.5 f/cc-years
 - SMR 2.6 for those >15 f/cc-years
- Lung Cancer excess mortality:
 - Years of Work
 - < 1 year: SMR 1.6
 - > 10 years: SMR 2.5

Historical Libby-related Health Data **Non-Occupational**

- •<u>Libby</u> Case Reports per local MDs
- Other Sites
- -Srebro & Roggli, 1994* (Tissue Data)
 MN Child exp: asbestosis & lung Cancer age 42

^{*} Srebro SH, Roggli VL. Asbestos-related disease associated with exposure to asbestiform tremolite. Am J Ind Med. 1994 Dec;26(6):809-19.

Libby Community Studies Since 1999

- Mortality Studies (NIOSH & ATSDR)
- Libby medical testing over 7300 participants (\$11 million) (Group)
- CT scan study of individuals with indeterminate CXR's (ATSDR)
- Progression of disease Study (Dr. Alan Whitehouse)
- Case-Series to identify non-occupational disease (ATSDR)

Community Based Mortality Studies

- NIOSH:*
 - Lincoln County, Montana: asbestosis rate ~ 40X US rate;
 - Age-adjusted rate 1988-1997 was highest in the US
- ATSDR: (20 year study period: 1979 1998)
 - Increased risk compared to MT & US populations
 - Asbestosis: 40-80x higher
 - Lung Cancer: 20-30% higher
 - Mesothelioma: marked increase (rate not quantifiable)
 - Observed 3/~ 2500 (deaths outside county not counted)
 - Expected: typically estimated <10/million

^{*} Evaluation NCHS data per R. Castellan, MD; NIOSH/DRDS

Medical Screening*

Summer 2000 & 2001 > 7300 Tested

Eligible

Lived/worked in Libby at least 6 months prior to 1990; 18 y/o

Testing

- Medical & Exposure History
- Chest x-rays (3 views: PA, right & left obliques)
- Pulmonary Function Testing (FVC, FEV1, FEV1/FVC ratio)
- Interpretations (reviewers blinded to history)
 - + CXR = at least 2/3 expert B-readers recorded abnormalities
 - * Funded by EPA, led by ATSDR & PHS

Prevalence of pleural abnormalities Asbestos-related x-ray changes

- Libby Site: 18 %
 - 5 % with no apparent exposure 24% with 6+ pathways
 - No control group but internal dose-response associations clear
 - >75% of those with abnormalities are non-workers, non-family members

Other US Studies:

- 0.2%: 1422 blue-collar workers in North Carolina (Castellan 1985)
- 0.9%: 693 loggers in Washington and Oregon (Stibolt 1991)
- 1.8%: 326 New Jersey residents (Anderson 1979)
- 2.3%: 1212 patients at VA hospitals in NJ (Miller JA 1996)
- 3.9%: cross-sectional 1060 US adults, workers included (Rogan 2002)

Crude Pleural Abnormality Rates (%) All CXR Views, 2/3 B-readers

AII	<u>Particip</u>	ants	18 % *	
			<u>Play Verm. Piles</u>	
Ever WRG emple	oyed	48.5	Sometimes	18.7
Secondary Cont	ractor	36.8	Frequently	26.0
Lived with WRG	worker	25.5	Popped Verm.	•
			Sometimes	21.7
			Frequently	25.4
			Vermiculite Gardening	20.3
Hand. Verm. Ins	ulation		Recreated along road to n	<u>nine</u>
Sometimes		20.9	Sometimes	17.4
Frequently		26.6	Frequently	21.7
Verm. Insul. In	<u>Home</u>	19.8	Played Ball/Expan. Plant	
			Sometimes	14.8
* PA view only 1	4%. n= 73	07 particip	Frequently pants	18.8

ATSDR High-Resolution CT Study* Indeterminate Chest X-rays

- 353 participants in the medical screening that had 1 of 3 B-reads as positive for pleural abnormalities.
- Three Expert Readers (Positive = 2/3 readers)

Group	% Positive
Total (353)	28%
Workers (55)	40%
Household Contacts (99)	48%
Non-Occupational/Recreational (199)	15%

^{*} Muravov, OI et. al. The usefulness of computer tomography in detecting asbestos-related pleural abnormalities in people who had indeterminate chest radiographs: the Libby, Montana, experience. Int. J. Hyg. Env. Hith. 2005; 208; 87-99.

Asbestos Pleural Disease Implications*

- Increased Risk of Malignancy
 - lung cancer & mesothelioma
- Functional Impairment & Increased Symptoms
 - Both circumscribed & diffuse disease
- **Progression** (radiologically & physiologically)
 - Treating physician of Libby patients
 - 94/123 (76%) patients followed over time had significant decline in pulmonary function (Whitehouse, 2004)
 - Case-reports:
 - 65 year-old dies of progressive asbestosis; only reported exposures 2 summers at ages 18 & 19 in California vermiculite processing facility (Wright, 2002); Also see (Srebro & Rogli, 1994)
 - Other studies
 - 37% of amosite workers with < 1 month exposure had progression of interstitial & pleural disease 20 years after end of exposure (Erlich 1992)

Clinical Review Summer 2006: Directors NIEHS, ATSDR, Univ. Cincinnati, Mt. Sinai Hospital

* ATS 2004. Diagnosis and Initial Management of Nonmalignant Diseases Related to Asbestos. Official Statement of the American Thoracic Society Adopted December 12, 2003. Am J Resp Crit Care Med 2004;170:691-715.

Critical Exposure Data Issues

- Solid Matrix Sampling Insufficient for Clean Up Decisions
- The Completed Exposure Pathways in the CSM are not Properly Quantified
- Current Clean Up Efficacy has not Been Evaluated
- Nature and Extent Data are not Complete for the Mine and Troy (Traditional RI)

Solid Matrix Sampling

- Soils That are Non-Detect by PLM Still Generate Significant Airborne Fibers When Disturbed
- The Relationship Between LA Contamination of Indoor Dust to Indoor Air is Poorly Understood

	S-QAPP Clean Fill	S-QAPP Unremediated Soil			Worker data (OU4)
Metric	rui	Α	B1	B2/C	- ·
N	21	10	21	13	1434
DF	24%	60%	67%	77%	43%
Max	0.006	0.150	1.34	0.23	21.0
95%	0.002	0.097	0.374	0.123	0.359
75%	0.000	0.003	0.037	0.023	0.043
50%	0.000	0.001	0.002	0.008	0.000
25%	0.000	0.000	0.000	0.003	0.000
5%	0.000	0.000	0.000	0.000	0.000
BE	0.00059	0.019	0.12	0.029	0.082
UCL	7.75E-03	2.85E+05	5.13E+03	6.88E-01	1.61E-01
UB	0.0064	0.15	1.3	0.23	0.39

Combined CSM/Efficacy Sampling

- The "Big Three" Pathways
 - Outdoor Ambient Air
 - Indoor Air (ABS)
 - Outdoor Air Around LA Contaminated Soils (ABS)
- Transportation Corridors
- The Rest

Nature and Extent

- Mine
 - Extent of Soil Contamination
 - Stream Transport
 - Airborne Transport
 - Surrounding Trees
- Troy
 - How Many Properties Impacted?